Skip to main content  Contents  Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   5.6   Partial Fractions (TI6) 
 
Learning Outcomes 
Subsection   5.6.1   Activities 
 
Activity   5.6.1 . 
 
Consider \(\displaystyle \int \frac{x^2+x+1}{x^3+x} \,dx\text{.}\)    Which substitution would you choose to evaluate this integral?
\(\displaystyle u=x^3\) 
\(\displaystyle u=x^3+x\) 
\(\displaystyle u=x^2+x+1\) 
Substitution is not effective
 
 
Activity   5.6.2 . 
 
Using the method of substitution, which of these is equal to \(\displaystyle\int \frac{5}{x+7} dx\text{?}\) 
\(\displaystyle 5\ln|x+7| +C\) 
\(\displaystyle \frac{5}{7}\ln|x+7| +C\) 
\(\displaystyle 5\ln|x|+5\ln|7|+C\) 
\(\displaystyle \frac{5}{7}\ln|x|+C\) 
 
 
Activity   5.6.4 . 
 
Which of the following is equal to \(\displaystyle\frac{1}{x}+\frac{1}{x^2+1}\text{?}\) 
\(\displaystyle \frac{2x}{x^2+x+1}\) 
\(\displaystyle \frac{x^3+x}{x^2+x+1}\) 
\(\displaystyle \frac{2x}{x^3+x}\) 
\(\displaystyle \frac{x^2+x+1}{x^3+x}\) 
 
 
Activity   5.6.5 . 
 
Based on the previous activities, which of these is equal to \(\displaystyle\int \frac{x^2+x+1}{x^3+x} dx\text{?}\) 
\(\displaystyle \ln|x|+\arctan(x)+C\) 
\(\displaystyle \ln|x^2+x+1|+C\) 
\(\displaystyle \ln|x^3+x|+C\) 
\(\displaystyle \arctan(x^3+x)+C\) 
 
 
Activity   5.6.6 . 
 
Suppose we know
\begin{equation*}
\frac{10x-11}{x^2+x-2}=\frac{7}{x-1}+\frac{3}{x+2}\text{.}
\end{equation*}
Which of these is equal to \(\displaystyle \int\frac{10x-11}{x^2+x-2}\, dx\text{?}\) 
\(\displaystyle 7\ln|x-1|+3\arctan(x+2)+C\) 
\(\displaystyle 7\ln|x-1|+3\ln|x+2|+C\) 
\(\displaystyle 7\arctan(x-1)+3\arctan(x+2)+C\) 
\(\displaystyle 7\arctan(x-1)+3\ln|x+2|+C\) 
 
 
Fact   5.6.8 .   Partial Fraction Decomposition. 
 
Let \(\displaystyle \frac{p(x)}{q(x)}\)  be a rational function, where the degree of \(p\)  is less than the degree of \(q\text{.}\)  
 
Linear Terms:  Let \((x-a)^n\)  divide \(q(x)\text{.}\)  Then the decomposition of \(\frac{p(x)}{q(x)}\)  will contain the terms
\begin{equation*}
\frac{A_1}{(x-a)} + \frac{A_2}{(x-a)^2} + \cdots +\frac{A_n}{(x-a)^n}\text{.}
\end{equation*}
 
Quadratic Terms:  Let \((x^2+bx+c)^n\)  divide \(q(x)\text{,}\)  where \(x^2+bx+c\)  is irreducible. Then the decomposition of \(\dfrac{p(x)}{q(x)}\)  will contain the terms
\begin{equation*}
\frac{B_1x+C_1}{x^2+bx+c}+\frac{B_2x+C_2}{(x^2+bx+c)^2}+\cdots+\frac{B_nx+C_n}{(x^2+bx+c)^n}\text{.}
\end{equation*}
  
Example   5.6.9 . 
 
Following is an example of a rather involved partial fraction decomposition.
\begin{align*}
&\frac{7 \, x^{6} - 4 \, x^{5} + 41 \, x^{4} - 20 \, x^{3} + 24 \, x^{2} + 11 \, x + 16}{x(x-1)^2(x^2+4)^2}\\
=& \frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^2}+\frac{Dx+E}{x^2+4}+\frac{Fx+G}{(x^2+4)^2}
\end{align*}
Using some algebra, it’s possible to find values for \(A\)  through \(G\)  to determine
\begin{align*}
&\frac{7 \, x^{6} - 4 \, x^{5} + 41 \, x^{4} - 20 \, x^{3} + 24 \, x^{2} + 11 \, x + 16}{x(x-1)^2(x^2+4)^2}\\
=& \frac{1}{x}+\frac{2}{x-1}+\frac{3}{(x-1)^2}+\frac{4x+5}{x^2+4}+\frac{6x+7}{(x^2+4)^2}\text{.}
\end{align*}
 
Activity   5.6.10 . 
 
Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}\text{?}\) 
\(\displaystyle \frac{A}{x}+\frac{B}{x+5}\) 
\(\displaystyle \frac{A}{x^3}+\frac{B}{x+5}\) 
\(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\) 
\(\displaystyle \frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{Dx+E}{x+5}\) 
 
 
Activity   5.6.11 . 
 
Which of the following is the form of the partial fraction decomposition of \(\displaystyle\frac{x^2+1}{(x-3)^2(x^2+4)^2}\text{?}\) 
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{D}{(x^2+4)^2}\) 
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{(x^2+4)^2}\) 
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x^2+4}+\frac{Dx+E}{(x^2+4)^2}\) 
\(\displaystyle \frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{Cx+D}{x^2+4}+\frac{Ex+F}{(x^2+4)^2}\) 
 
 
Activity   5.6.12 . 
 
Consider that the partial decomposition of \(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}\)  is
\begin{equation*}
\displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}.
\end{equation*}
What equality do we obtain if we multiply both sides of the above equation by \((x+1)^2x\text{?}\) 
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)^2\) 
\(\displaystyle x^2+5x+3=A(x+1)+B(x+1)^2+Cx\) 
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx+C(x+1)\) 
\(\displaystyle x^2+5x+3=Ax(x+1)+Bx^2+C(x+1)^2\) 
 
 
Activity   5.6.13 . 
 
Use your choice in 
Activity 5.6.12  (which must hold for any 
\(x\)  value) to answer the following.
(a) By substituting \(x=0\)  into the equation, we may find:
\(\displaystyle A=1\) 
\(\displaystyle B=-2\) 
\(\displaystyle C=3\) 
 (b) By substituting \(x=-1\)  into the equation, we may find:
\(\displaystyle A=-4\) 
\(\displaystyle B=1\) 
\(\displaystyle C=5\) 
 
Activity   5.6.14 . 
 
\begin{equation*}
\unknown x^2+\unknown x=Ax^2+Ax\text{.}
\end{equation*}
  What value of \(A\)  satisfies this equation?
 
\(\displaystyle -2\) 
\(\displaystyle 3\) 
\(\displaystyle 4\) 
\(\displaystyle -5\) 
 
Activity   5.6.15 . 
 
By using the form of the decomposition 
\(\displaystyle \frac{x^2+5x+3}{(x+1)^2x}=\frac{A}{x+1}+\frac{B}{(x+1)^2}+\frac{C}{x}\)  and the coefficients found in 
Activity 5.6.13  and 
Activity 5.6.14 , evaluate 
\(\displaystyle \int \frac{x^2+5x+3}{(x+1)^2x} dx\text{.}\) 
Activity   5.6.16 . 
 
Given that \(\displaystyle\frac{x^3-7x^2-7x+15}{x^3(x+5)}=\frac{A}{x}+\frac{B}{x^2}+ \frac{C}{x^3}+\frac{D}{x+5}\)  do the following to find \(A, B, C\text{,}\)  and \(D\text{.}\) 
(a) 
Eliminate the fractions to obtain
\begin{equation*}
x^3-7x^2-7x+15=A(\unknown)(\unknown)+B(\unknown)(\unknown)+C(\unknown)+D(\unknown)\text{.}
\end{equation*}
 (b) Plug in an \(x\)  value that lets you find the value of \(C\text{.}\) 
(c) Plug in an \(x\)  value that lets you find the value of \(D\text{.}\) 
(d) Use other algebra techniques to find the values of \(A\)  and \(B\text{.}\) 
Activity   5.6.17 . 
 
Given your choice in 
Activity 5.6.16  Find 
\(\displaystyle\int \frac{x^3-7x^2-7x+15}{x^3(x+5)} dx.\) 
Activity   5.6.18 . 
 
Consider the rational expression \(\displaystyle\frac{2x^3+2x+4}{x^4+2x^3+4x^2}.\)  Which of the following is the partial fraction decomposition of this rational expression?
\(\displaystyle \frac{1}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\) 
\(\displaystyle \frac{2}{x}+\frac{0}{x^2}+\frac{-1}{x^2+2x+4}\) 
\(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{-1}{x^2+2x+4}\) 
\(\displaystyle \frac{0}{x}+\frac{1}{x^2}+\frac{2x-1}{x^2+2x+4}\) 
 
 
Activity   5.6.19 . 
 
Given your choice in 
Activity 5.6.18  Find 
\(\displaystyle\int \frac{2x^3+2x+4}{x^4+2x^3+4x^2} dx\text{.}\) 
Activity   5.6.20 . 
 
Given that \(\displaystyle \frac{2x+5}{x^2+3x+2}=\frac{-1}{x+2}+\frac{3}{x+1}\text{,}\)  find \(\displaystyle\int_0^3  \frac{2x+5}{x^2+3x+2} dx\text{.}\) 
Activity   5.6.21 . 
 
Evaluate \(\displaystyle \int \frac{4x^2-3x+1}{(2x+1)(x+2)(x-3)}dx\text{.}\) 
Subsection   5.6.2   Videos 
 
Figure   111.    Video: I can integrate functions using the method of partial fractions
Subsection   5.6.3   Exercises